Neighbourhood conditions for fractional ID-[a, b]-factor-critical graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A result on fractional ID-[a, b]-factor-critical graphs

A graphG is fractional ID-[a, b]-factor-critical ifG−I includes a fractional [a, b]-factor for every independent set I of G. In this paper, it is proved that if α(G) ≤ 4b(δ(G)−a+1) (a+1)2+4b , then G is fractional ID-[a, b]-factor-critical. Furthermore, it is shown that the result is best possible in some sense.

متن کامل

Degree Conditions of Fractional ID-k-Factor-Critical Graphs

We say that a simple graph G is fractional independent-set-deletable k-factor-critical, shortly, fractional ID-k-factor-critical, if G− I has a fractional k-factor for every independent set I of G. Some sufficient conditions for a graph to be fractional ID-k-factor-critical are studied in this paper. Furthermore, we show that the result is best possible in some sense. 2010 Mathematics Subject C...

متن کامل

A degree condition for graphs to be fractional ID-[a, b]-factor-critical

Let G be a graph of sufficiently large order n, and let a and b be integers with 1 ≤ a ≤ b. Let h : E(G) → [0, 1] be a function. If a ≤ ∑x∈e h(e) ≤ b holds for any x ∈ V (G), then G[Fh] is called a fractional [a, b]-factor of G with indicator function h, where Fh = {e ∈ E(G) | h(e) > 0}. A graph G is fractional independent-set-deletable [a, b]-factor-critical (simply, fractional ID-[a, b]-facto...

متن کامل

A neighborhood condition for fractional ID-[a, b]-factor-critical graphs

A graph G is fractional ID-[a, b]-factor-critical if G − I has a fractional [a, b]-factor for every independent set I of G. We extend a result of Zhou and Sun concerning fractional ID-k-factor-critical graphs.

متن کامل

Forbidden graphs for degree and neighbourhood conditions

For various graph-theoretic properties P that impose upper bounds on the minimum degree or the size of a neighbourhood set, we characterize the class %(P’) (%((P’)) of graphs G such that G and all its subgraphs (subcontractions) have property P. For example, if P is “6 <xn” (6 = minimum degree, n = number of vertices, 0 <X < 1) then S(P’) = F(K,+,), the class of graphs that do not have K,,, as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications de l'Institut Mathematique

سال: 2017

ISSN: 0350-1302,1820-7405

DOI: 10.2298/pim1715205y