Neighbourhood conditions for fractional ID-[a, b]-factor-critical graphs
نویسندگان
چکیده
منابع مشابه
A result on fractional ID-[a, b]-factor-critical graphs
A graphG is fractional ID-[a, b]-factor-critical ifG−I includes a fractional [a, b]-factor for every independent set I of G. In this paper, it is proved that if α(G) ≤ 4b(δ(G)−a+1) (a+1)2+4b , then G is fractional ID-[a, b]-factor-critical. Furthermore, it is shown that the result is best possible in some sense.
متن کاملDegree Conditions of Fractional ID-k-Factor-Critical Graphs
We say that a simple graph G is fractional independent-set-deletable k-factor-critical, shortly, fractional ID-k-factor-critical, if G− I has a fractional k-factor for every independent set I of G. Some sufficient conditions for a graph to be fractional ID-k-factor-critical are studied in this paper. Furthermore, we show that the result is best possible in some sense. 2010 Mathematics Subject C...
متن کاملA degree condition for graphs to be fractional ID-[a, b]-factor-critical
Let G be a graph of sufficiently large order n, and let a and b be integers with 1 ≤ a ≤ b. Let h : E(G) → [0, 1] be a function. If a ≤ ∑x∈e h(e) ≤ b holds for any x ∈ V (G), then G[Fh] is called a fractional [a, b]-factor of G with indicator function h, where Fh = {e ∈ E(G) | h(e) > 0}. A graph G is fractional independent-set-deletable [a, b]-factor-critical (simply, fractional ID-[a, b]-facto...
متن کاملA neighborhood condition for fractional ID-[a, b]-factor-critical graphs
A graph G is fractional ID-[a, b]-factor-critical if G − I has a fractional [a, b]-factor for every independent set I of G. We extend a result of Zhou and Sun concerning fractional ID-k-factor-critical graphs.
متن کاملForbidden graphs for degree and neighbourhood conditions
For various graph-theoretic properties P that impose upper bounds on the minimum degree or the size of a neighbourhood set, we characterize the class %(P’) (%((P’)) of graphs G such that G and all its subgraphs (subcontractions) have property P. For example, if P is “6 <xn” (6 = minimum degree, n = number of vertices, 0 <X < 1) then S(P’) = F(K,+,), the class of graphs that do not have K,,, as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications de l'Institut Mathematique
سال: 2017
ISSN: 0350-1302,1820-7405
DOI: 10.2298/pim1715205y